Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37048307

RESUMO

Waxy corn kernels with different colors have high phenolic content and good application potential in medicine and food healthcare. In our work, the content changes of phenolic and anthocyanins profiles were related to genes in the anthocyanin biosynthesis pathway, and the antioxidant activities of three different colors of waxy corn kernels (black, white, and yellow) were determined during kernel development. Results showed that growing temperature and light intensity could affect the accumulation of phytochemicals and antioxidant activities in waxy corns during maturation. Phenolic and antioxidant activities decreased over kernel maturation, and spring had higher nutrition levels during the best harvest time (20 and 25 days after pollination in the spring and autumn, respectively) for waxy corns. Cyanidin-3-O-glucoside and pelargonidin-3-O-glucoside were the main anthocyanins detected in the black waxy corns. The contents of cyanidin are higher than pelargonidin followed by peonidin in the autumn, while on the other hand, pelargonidin had a slightly higher content compared to cyanidin in the spring. DFR, CF1, and ANS were the key genes affecting anthocyanin accumulation. This work provided information on the best harvest time for the pigment of waxy corn in order to achieve relatively high phenolic profiles and antioxidant activities. It also illustrated the possible relationship between weather conditions, gene expression levels, and phenolic content during kernel development.

2.
J Sci Food Agric ; 103(3): 1412-1420, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36151954

RESUMO

BACKGROUND: Maize is a sought-after food crop because it is micronutrient-rich and affordable. It is an excellent source of carotenoids and tocochromanols. To investigate ways to enhance the micronutrients in maize, we grew maize seedlings with ultrasonic pretreatment to study the effect of ultrasound pretreatment on the biofortification of tocochromanols and carotenoids using high-performance liquid chromatography and real-time quantitative polymerase chain reaction. RESULTS: Four tocopherol isomers, three tocotrienol isomers and six carotenoid components were measured in maize seedlings. Compared with the untreated maize seedlings, carotenoid content increased and reached the highest level at 8 min ultrasonic pretreatment (19.21 ± 0.44 µg g-1 fresh weight (FW)), but tocotrienol content evidently decreased. Tocopherol dropped at first but began to rise after 8 min ultrasonic pretreatment (258.1 ± 6.4 µg g-1 FW). In particular, zeaxanthin in maize seedlings doubled after pre-sonication, while lutein was boosted to 11.81 ± 0.20 µg g-1 FW. Ultrasonic pretreatment changed the predominant component of tocochromanols in maize seedlings from γ-tocotrienol to α-tocopherol, with the latter content being 1.3 times higher than in the untreated group. Up-regulation of key genes involved in the biosynthesis of tocopherols and carotenoids in maize seedlings occurred as a result of both 2 min and 6 min sonication pretreatment. In particular, Zm HPPD, Zm ZE, Zm ZDS and Zm MPBQ-MT could partly explain the changes in these phytochemicals. CONCLUSION: Wet ultrasonic pretreatment could increase tocopherol and carotenoid accumulation in maize seedlings but decrease tocotrienol synthesis. Some up-regulating genes are related to relevant syntheses, such as Zm HPPD, Zm ZE, Zm ZDS and Zm MPBQ-MT, which could influence the accumulation of tocopherols and carotenoids after ultrasonic pretreatment. © 2022 Society of Chemical Industry.


Assuntos
Tocotrienóis , Zea mays , Zea mays/genética , Zea mays/química , Plântula/química , Biofortificação , Ultrassom , Carotenoides/análise , Tocoferóis/análise
3.
Waste Manag ; 154: 209-216, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257180

RESUMO

Thermal hydrolysis pretreatment could release organic sufficiently from solid into liquid phase to accelerate the high solid sludge anaerobic digestion. Thus, up-flow anaerobic sludge blanket (UASB) could be a promising energy recovery process to treat thermal hydrolyzed sludge dewatering liquor with significantly augmented the organic loading rate (OLR). In this study, its performance was investigated using a lab-scale UASB to treat sludge dewatering liquor after 165 °C, 30 min thermal hydrolysis pretreatment. The results show that 85.57% of the organic in thermal hydrolyzed sludge dewatering liquor could be converted to methane. The UASB adapts to high OLR stably, and the COD removal efficiency was 71.98 ± 1.95% at OLR of 18.35 ± 0.78 kgCOD·(m3·d)-1, and the gap between the maximum potential and experimental methane production yields could be observed during different OLRs. It could be explained as the methanogenesis rate decreased due to the shift of dominant pathway from acetoclastic methanogenesis to syntrophic acetate oxidation following hydrogenotrophic methanogenesis. Methanospirillum became the dominant methanogen with the increase of OLR. In addition, the methane production yield and rate would be hindered till the ammonia nitrogen concentration exceeds 4 g·L-1. Direct interspecies electron transfer could be promising methods to improve UASB performance treating thermal hydrolyzed dewatering liquor.

4.
J Sci Food Agric ; 100(14): 5230-5238, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32519367

RESUMO

BACKGROUND: Black sweet corn as an edible fruit has various nutritional qualities. This study discusses changes in the vitamin C and E, folate, and carotenoid content during black sweet corn maturation, and also the effects of preharvest weather conditions and of related genes in multi-vitamin biosynthesis pathways. RESULTS: Most vitamin levels improved, especially vitamin C and carotenoid levels, while the folate content dropped rapidly. Transcript levels of most genes in folate biosynthesis showed trends that were similar to the content changes. VTC2 and GLDH, which are regulated by light, had high expression levels leading to an increase in ascorbate content during maturation. γ-Tocotrienol is the main vitamin E component, and HGGT, the key gene controlling the synthesis of tocotrienols, had a much higher expression level than other genes. Lutein and zeaxanthin were the dominant carotenoid components. A rapid reduction in the transcription level of LCYε could result in a lower lutein production rate . CONCLUSION: Black sweet corn has a high nutritional value and is rich in vitamins, including zeaxanthin, γ-tocotrienols, and ascorbic acid. The best harvest time is between 20-25 days after pollination (DAPs) when kernels had a good taste as well as relatively high vitamin levels. © 2020 Society of Chemical Industry.


Assuntos
Sementes/crescimento & desenvolvimento , Vitaminas/biossíntese , Zea mays/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Cor , Luteína/análise , Luteína/metabolismo , Sementes/química , Sementes/metabolismo , Tocotrienóis/análise , Tocotrienóis/metabolismo , Vitaminas/análise , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zeaxantinas/análise , Zeaxantinas/metabolismo
5.
J Sci Food Agric ; 100(4): 1694-1701, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31803938

RESUMO

BACKGROUND: Extreme temperatures are among the primary abiotic stresses that affect plant growth and development. Ascorbic acid (AsA) is an efficient antioxidant for scavenging relative oxygen species accumulated under stress. Folates play a significant role in DNA synthesis and protect plants against oxidative stress. Sweet corn (Zea mays L.), a crop grown worldwide, is sensitive to extreme temperatures at seedling stage, which may cause yield loss. This study was conducted to explore the biosynthetic regulative mechanism of AsA and folates in sweet corn seedlings under temperature stress. RESULTS: The AsA and folate composition and relative gene expression in sweet corn seedlings grown under different temperature stresses (10, 25, and 40 °C) were evaluated. The imposition of temperature stress altered the AsA content mainly by modulating the expression of Zm DHAR, whose encoded enzyme dehydroascorbic reductase (DHAR) is essential in the AsA recycle pathway. Low temperature stress raised the expressions of relative genes, leading to folate accumulation. High temperature stress modulated the folate content by influencing the expression of the correspondence gene for aminodeoxychorismate synthase, Zm ADCS, as well as downstream genes that connected with DNA methylation. CONCLUSION: These results provided a theoretical basis, at a genetic level, for understanding the stress responses mechanism in sweet corn seedlings, offering guidance for sweet corn cultivation. © 2019 Society of Chemical Industry.


Assuntos
Ácido Ascórbico/metabolismo , Ácido Fólico/metabolismo , Zea mays/metabolismo , Ácido Ascórbico/análise , Ácido Fólico/análise , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/química , Plântula/genética , Plântula/metabolismo , Temperatura , Zea mays/química , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...